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Abstract

Let g ∈ Lp(T), 1 < p < ∞. We show that the set of points where the Fourier partial sums Sng(x) diverge
as fast as n� has Hausdorff dimension less or equal to 1 − �p. A comparable result holds for wavelet series.
Conversely, we show that this inequality is sharp and depends only on the Hausdorff dimension of the set of
divergence.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

After Du Bois Raymond’s construction of a continuous function whose Fourier series diverges
at one point [5], Haar introduced an orthonormal basis of L2 in which the expansion of continuous
functions converge uniformly on compact sets. In further developments of the theory of Fourier
series, Kahane and Katznelson [12] proved that, given any F� set A ⊂ T := R/Z of Lebesgue
measure zero, there exists a continuous function whose Fourier series diverges everywhere on
A; meanwhile the Haar basis became the prototype of wavelet bases, and wavelet expansions
of continuous functions also converge uniformly on compact sets [20]. Here we see one of the
main differences between Fourier and wavelet bases. Another difference is that wavelets yield
unconditional bases of Lp, 1 < p < ∞; this is false for the Fourier basis if p �= 2. In this paper,
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we wish to compare wavelet and Fourier bases on the matter of pointwise divergence for functions
in Lp.

Since the works of Carleson [2] and Hunt [9], we know that the Fourier series of a function in
Lp(T), 1 < p�∞, converges almost everywhere. Our goal in this paper is to study the rate of
divergence at the other points; we shall see that the set of points where the divergence is “fast”
must be “small” in the sense of Hausdorff dimension. On the other hand, the wavelet expansion
of a function in Lp also converges almost everywhere if 1�p�∞ [14]. The rate of divergence
turns out to have a limitation equivalent to the one found for Fourier series. In both cases, we
demonstrate that our bounds are sharp by constructing a function whose Fourier or wavelet series
pointwise diverging at a given rate on any set satisfying the dimension condition.

These results can be interpreted as a bound on the “multifractal spectrum of Fourier (or wavelet)
divergence” of a function f ∈ Lp, in the same fashion as functions in Besov spaces have bounded
multifractal spectrum of Hölder singularities [10,11].

Let us first introduce some notations.

1.1. Fourier transform

Let � ∈ R and e� : t �→ e2�i�t . The continuous Fourier transform of f ∈ L1(R) is

f̂ : � �→
∫

R
f (x)e�(x) dx.

A function g ∈ L1(T) is identified to a 1-periodic function on R. Its Fourier transform is the
tempered distribution

ĝ : � �→
∑
k∈Z

〈g, ek〉 �(� − k),

where

〈g, ek〉 :=
∫

T
g(t)ek(t) dt.

For n ∈ N, we define the band-limiting operator Sn by Ŝnf := 1[−n,n]f̂ . If g ∈ L1(T), this
corresponds to taking the partial sum of the Fourier series

Sng : t �→
n∑

k=−n

〈g, ek〉 ek(t).

We write En(R) := Sn(L
1(R)) and En(T) := Sn(L

1(T)), respectively, the sets of band-limited
functions on R and T. Sn is the orthogonal projection (with respect to the L2 scalar product)
on En.

1.2. Wavelets

Let � and � be the father and mother wavelets of a multiresolution analysis of L2(R): �
has at least one zero moment and the family of functions �k : x �→ �(x − k) and �jk : x �→
2

j
2 �(2j x − k), (j, k) ∈ N × Z, form an orthonormal basis of L2(R). We also require that � and

� are, for an � > 0, piecewise �-Lipschitz and rapidly decreasing functions.
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Since we are interested in local properties and want to compare the wavelets with the Fourier
series, we shall focus on periodic functions. An orthonormal basis of L2(T) is formed by the
periodized wavelets [3,16]

� : x �→
∑
k∈Z

�k(x) = 1

and for j ∈ N, 0�k < 2j ,

�jk : x �→
∑
l∈Z

�jk(x − l).

Similarly to the Fourier partial sums, we define the wavelet partial sums

Tj0g : t �→ 〈g, 1〉 +
j0∑

j=0

2j −1∑
k=0

〈
g, �jk

〉
�jk(t),

as well as

T ∗
j0

g : t �→ |〈g, 1〉| +
j0∑

j=0

2j −1∑
k=0

∣∣〈g, �jk

〉
�jk(t)

∣∣.
1.3. Hausdorff dimension

If � : R+ → R+ is an increasing continuous function (dimension function), the �-Hausdorff
outer measure of a set E ⊂ R is

H�(E) := lim
�→0

inf
r∈R�(E)

∑
B∈r

�(|B|),

R�(E) being the set of countable coverings of E with intervals B of length |B|��. When �s(x) =
xs , we write for short Hs instead of H�s . The Hausdorff dimension of a set E is

dimH (E) := sup
{
s, Hs(E) > 0

}
.

This definition is not changed if the coverings are restricted to dyadic intervals [7]. Moreover, if E

has Hausdorff measure zero, there exists not only a covering such that the above series converges,
but an infinite covering as well:

Lemma 1. If H�(E) = 0, then there exists a sequence Ej , union of Nj dyadic intervals of size
2−j , such that

∑
j Nj�(2−j )�2 and E ⊂ lim supj Ej .

Proof. Since H�(E) = 0, for all j0 ∈ N there is a covering
⋃

I∈rj0
I ⊃ E, where rj0 is

a set of dyadic intervals of size �2−j0 , satisfying
∑

I∈rj0
�(I )�2−j0 . Let Nj be the num-

ber of all the intervals of size 2−j in
⋃

j0
rj0 , and Ej their union. Then E ⊂ lim supj Ej and∑

j Nj�(2−j )�
∑

j0
2−j0 = 2. �

If B is an interval and 	 > 0, 	B will denote the interval with same center as B and length
	|B|.
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2. Fourier series

Let us state our main theorem for Fourier series.

Theorem 2. Let g ∈ Lp(T), 1 < p < ∞. For ��0, let

E(�) :=
{
x, lim sup

n→∞
n−�|Sng(x)| > 0

}
.

Then dimH (E(�))�1 − �p.
Conversely, given a set E such that dimH (E) < 1 − �p, there exists a function g ∈ Lp(T)

such that for all x ∈ E, lim supn n−�|Sng(x)| = ∞.

This theorem is a direct consequence of Corollaries 10 and 13, derived from the more precise
Propositions 9 and 11 below.

2.1. Preliminary results

In the long and fertile story of Fourier series in Lp spaces, M. Riesz proved first the uniform
continuity of the operators Sn:

Proposition 3. If 1 < p < ∞, there exists Cp < ∞ such that, for all n ∈ N,

‖Sng‖Lp �Cp‖g‖Lp ,

if g ∈ Lp(R or T).

Later, this was much improved [2,9] (see also [1]):

Theorem 4 (Carleson, Hunt). Let S∗g(x) := supn |Sng(x)|. The operator S∗ is a continuous
endomorphism of Lp(R or T) for all p ∈ (1, ∞).

We also recall the classical Nikolsky inequality (see [17]):

Proposition 5. Let g ∈ En(R or T). If 1�p�q �∞, then

‖g‖Lq �n
1
p

− 1
q ‖g‖Lp .

We shall need a localized version of this inequality (for q = ∞), where we multiply g ∈ En(T)

by a compactly supported “window” function 
n of width proportional to 1
n

. Ideally, we would

want
∥∥
ng

∥∥
L∞(R)

�Cn
1
p
∥∥
ng

∥∥
Lp(R)

, but this would require that 
̂ also has compact support (see
proof of Lemma 8). Since this cannot be, some loss in the inequality is necessary. At best, 
̂ can
have almost-exponential decrease.

Lemma 6. Let � > 0 and H(�) be the set of functions f for which there exist Cf and C′
f > 0

such that, ∀� ∈ R,
∣∣f̂ (�)

∣∣�Cf e
−C′

f |�|� . Then H(�) contains a non-zero compactly supported
function 
 if and only if � < 1.
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Note that H(�) is an algebra for pointwise multiplication, so 
 can be taken non-negative. Also,
up to a rescaling of 
, the constants C
 and C′


 be chosen arbitrarily in (0, ∞).

Proof of Lemma 6. Let us first prove the “only if” part. If the function f satisfies the inequality

∀� ∈ R,

∣∣∣f̂ (�)

∣∣∣�Cf e
−C′

f |�|�
,

with some ��1, then we also have

∀� ∈ R,

∣∣∣f̂ (�)

∣∣∣�Bf e
−B ′

f |�|
.

This condition implies, by the Paley–Wiener theorem, that f has an analytical continuation to the
domain {z : |�z| < B ′

f }, therefore cannot be compactly supported if it is non-zero.
Conversely, suppose that � < 1 and let 
 be defined as in [18] by its Fourier transform.


̂(�) :=
(

sin(�)

�

)2 ∞∏
k=1

sin(�/k
1
� )

�/k
1
�

.

With the Paley–Wiener theorem, it can be seen that 
 has compact support. Let |�|�1, n := ⌊|�|�⌋,
and remark that

|̂
(�)|�
n∏

k=1

∣∣∣∣∣ sin(�/k
1
� )

�/k
1
�

∣∣∣∣∣�
n∏

k=1

k
1
�

|�| � Mn(�)

nn/� ∼n→∞
(√

2�ne−n
) 1

�
.

So there exists C such that |̂
(�)|�Ce
− n+1

2� �Ce
− 1

2� |�|� , hence 
 ∈ H(�). �

Remark 7. Using the Denjoy–Carleson theorem, one can actually show that, given a positive de-
creasing function r , the necessary and sufficient condition for the set of functions with Fourier de-
crease

∣∣f̂ (�)
∣∣�r(|�|) to possess a non-zero compactly supported function is that

∫∞
1

log(r(v))

v2 dv >

−∞. This would slightly improve the subsequent results, but to the price of some unwanted com-
plication.

In the following, 
 > 1 is fixed and 
 will be a compactly supported function in H( 1

 ) such

that, for all y ∈ R, 0�
(y)�
(0) = 1 (see proof below). Given x ∈ R and n ∈ N, we define

x,n : y �→ 
(n(y − x)), which can be viewed as a localization window at scale n−1 around x.

Lemma 8. For all � > 0, 1 < p < ∞, there exist a constant C and a function 
 as above such
that, for all n ∈ N, g ∈ En(T) and x ∈ R,∥∥
x,ng

∥∥
L∞(R)

�C
(
n

1
p log(n)



p
∥∥
x,ng

∥∥
Lp(R)

+ n−�‖g‖Lp(T)

)
.

Proof. Lemma 6 provides a compactly supported, non-negative, continuous function in H( 1

 );

this vector space being invariant by translations, one can ask that this function 
 reaches its

maximum value = 1 at 0. Note that 
̂x,n(�) = 1
n

̂
(

�
n

)
e−2�ix�. If g ∈ En(T) (a trigonometric
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polynomial), then ĝ(�) =∑n
j=−n

〈
g, ej

〉
�(� − j). We write


̂x,ng(�) = 1|�|�n log(n)
 
̂x,ng(�)︸ ︷︷ ︸
f̂1(�)

+ 1|�|>n log(n)
 
̂x,ng(�)︸ ︷︷ ︸
f̂2(�)

.

Since f̂1 is supported in the set {|�|�n log(n)
}, by Propositions 5 and 3,

‖f1‖L∞ �n
1
p log(n)



p ‖f1‖Lp �Cpn

1
p log(n)



p
∥∥
x,ng

∥∥
Lp .

On the other hand,

f̂2(�) = 1|�|>n log(n)
(
̂x,n � ĝ)(�)

=
n∑

j=−n

〈
g, ej

〉
n

1|�|>n log(n)
 
̂

(
� − j

n

)
e−2�ix(�−j).

Let us bound the L1 norm of the terms of this sum: for all −n�j �n,∫ ∞

n log(n)


1

n

∣∣∣∣̂
(� − j

n

)∣∣∣∣ d� =
∫ ∞

log(n)
− j
n

|̂
(u)| du

�
∫ ∞

1
2 log(n)


C
e
−C′


u
1



du

� C


∫ ∞
1
2 log(n)


C′



2

u

1

 −1e− C′



2 u

1



du

� C
e
− C′



4 log(n)

� C
n
−(�+1),

if n is large enough so that u� 1
2 log(n)
 ⇒ e− C′



2 u

1

 � C′



2
 u

1

 −1 and if we chose 
 such that

C′

 �4(�+ 1). The other half of the integral has the same bound, so finally, by the inverse Fourier

transform,

‖f2‖L∞ �‖f̂2‖L1 �
n∑

j=−n

∫
|�|>n log(n)


∣∣∣∣∣
〈
g, ej

〉
n


̂

(
� − j

n

)∣∣∣∣∣ d�

� 2C
n
−(�+1)

n∑
j=−n

∣∣〈g, ej
〉∣∣

� 6C
n
−�‖g‖Lp(T),

using Parseval’s theorem, Schwarz’s inequality, and Proposition 3. �

Note that the choice of 
 actually depends on �: the larger �, the larger the support of 
.

2.2. Upper bound on the Hausdorff dimension

Proposition 9. Let g ∈ Lp(T), 1 < p < ∞. Let � : [0, ∞) → (0, ∞) be an increasing

function and E(�) :=
{
x, lim supn

|Sng(x)|
�(n)

= ∞
}

. If 
 > 1 and �(s) = Os→0+
(

s�(s−1)p

log(s−1)


)
, then

H�(E(�)) = 0.
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Proof. Let M ∈ N and EM :=
{
x, lim supn

|Sng(x)|
�(n)

> M
}

. Let � > 0 and 
 ∈ H( 1

 ) be the

function from Lemma 8, supported in [−K, K]. We also fix an � > 0. For every x ∈ EM ,
there exist infinitely many nx such that

∣∣Snx g(x)
∣∣�M�(nx). We chose nx large enough so that

n−1
x <

�
10K

and n−�
x supn ‖Sng‖Lp(T) � M

2C
�(nx) (the constant C from Lemma 8, depending only

on � and p). Then, defining Bx := [x − K
nx

, x + K
nx

], we have∥∥Snx g
∥∥

Lp(Bx)
�
∥∥
x,nx

Snx g
∥∥

Lp(R)

�
1
C

∥∥
x,nx
Snx g

∥∥
L∞(R)

− n−�
x

∥∥Snx g
∥∥

Lp(T)

n
1
p
x log(nx)



p

�
1
C

∣∣Snx g(x)
∣∣− M

2C
�(nx)

n
1
p
x log(nx)



p

� M

2C

�(nx)

n
1
p
x log(nx)



p

.

By the “5r-covering theorem” [8,15], we can extract from {Bx, x ∈ EM} a countable family of
disjoint intervals Bi, i ∈ N, of size 2K

ni
, such that EM ⊂⋃i∈N 5Bi . Then,∫

T

∣∣S∗g(x)
∣∣p dx �

∑
i∈N

∫
Bi

∣∣S∗g(x)
∣∣p dx

�
∑
i∈N

∫
Bi

∣∣Sni
g(x)

∣∣p dx

�
∑
i∈N

(
M

2C

)p �(ni)
p

ni log(ni)

.

We thus have found that the family {5Bi, i ∈ N} is an �-covering of EM satisfying

∑
i∈N

�(|5Bi |) � C1

∑
i∈N

10K
ni

�( ni

10K
)p

log
(

ni

10K

)

� C2M

−p
∥∥S∗g

∥∥p

Lp ,

which is finite by the Carleson–Hunt theorem. Note that this bound is independent of �, and thus
also bounds H�(EM). But E(�) =⋂M EM , hence H�(E(�)) = limM→∞ H�(EM) = 0. �

We should point out the fact that, although it makes the proof more elegant, the full strength
of the Carleson–Hunt theorem is not used here. Indeed, when �(n) = n0, Proposition 9 yields
only H�(E(�)) = 0 for �(x) = x

log(x−1)

, whereas the simple fact that S∗g ∈ Lp implies that

H1(E(�)) = 0 (the Fourier series is bounded Lebesgue-almost everywhere). Similarly, one might
expect that for �(n) = n�, H1−�p(E(�)) = 0. This shortcoming seems to be inherent to the
localization technique employed; we can only conjecture that 
 could be replaced by 0 in the
proposition.
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Corollary 10. Let g ∈ Lp(T), 1 < p < ∞. For ��0, let

E(�) :=
{
x, lim sup

n→∞
n−�|Sng(x)| > 0

}
.

Then dimH (E(�))�1 − �p.

Naturally, a negative Hausdorff dimension means that the set is empty.

Proof of Corollary 10. Take �(n) := n�

log(n)
and �(x) := x1−�p+� for an arbitrary � > 0.

Then E(�) ⊂ E(�), and applying Proposition 9 yields H1−�p+�(E(�)) = 0. It follows that
dimH (E(�))� dimH (E(�))�1 − �p + �. �

2.3. Optimality of the upper bound

Our converse to Proposition 9 is the construction of a function, showing that the above bound
is optimal and depends only on the Hausdorff dimension of the set.

Proposition 11. Let 1 < p < ∞, � : [0, ∞) → (0, ∞) be an increasing function and � be a
dimension function such that

∫ 1

0

(
s�(s−1)p

�(s)

) 1
p−1 ds

s
< ∞. (1)

For every set E ⊂ T satisfying H�(E) = 0, there exists g ∈ Lp(T) such that for all x ∈ E,
lim supn

|Sng(x)|
�(n)

= ∞.

Proof. Let us first remark that whenever (1) is true, one can find a non-decreasing �̃ such that

limn→∞
˜�(n)

�(n)
= ∞ but still

∫ 1

0

(
s�̃(s−1)p

�(s)

) 1
p−1 ds

s
< ∞. (2)

By Lemma 1, we have an infinite covering of E by unions Ej of Nj dyadic intervals of length
2−j . Let 
j : x �→ 1 − min(1, 2j d(x, Ej )): this function satisfies 
j (x) = 1 if x ∈ Ej , 
j (x) = 0

outside of a set of measure �3Nj 2−j , and
∥∥∥
′

j

∥∥∥
L∞ �2j . Introducing the Fejér sum

�2j g : t �→ 1

2j

2j −1∑
k=0

Skg(t)

and the Fejér kernel F2j : x �→ 1
2j

(
sin(2j�x)
sin(�x)

)2
, we have

�2j 
j (x) − 
j (x) =
∫ 1

2

− 1
2

(
j (x + y) − 
j (x))F2j (y) dy
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(see e.g. [6]). We claim that (if j �3) this integral is absolutely bounded by 1
2 (see Lemma 12

below). It follows that for all x ∈ Ej , �2j 
j (x)� 1
2 . On the other hand,∥∥�2j 
j

∥∥
Lp �

∥∥F2j

∥∥
L1

∥∥
j∥∥Lp = ∥∥
j∥∥Lp �(3Nj 2−j )
1
p .

Let us now define

g :=
∑
j∈N

�̃(2j )e3.2j �2j 
j .

The frequency shift (multiplication by e3.2j ) is here to prevent “interferences”: since �2j 
j has
Fourier support in {1−2j , . . . , 2j −1}, the Fourier support of e3.2j �2j 
j is in {2j+1+1, 2j+2−1},
disjoint from the other terms. Therefore if l ∈ N,

S2l+2g(x) = S2l+1g(x) + �̃(2l )e3.2l (x)�2l
l (x),

so that

max
(∣∣S2l+1g(x)

∣∣, ∣∣S2l+2g(x)
∣∣)� 1

2 �̃(2l )�2l
l (x).

If x ∈ El , then there exists n (either 2l+1 or 2l+2), such that |Sng(x)|� 1
4 �̃(n). But for an x ∈ E,

this happens for infinitely many l, so lim supn
|Sng(x)|

�(n)
= ∞.

Furthermore, we have the following estimate on the Lp-norm of g:

3− 1
p ‖g‖Lp �

∑
j∈N

�̃(2j )(Nj 2−j )
1
p

�
∑
j∈N

(Nj�(2−j ))
1
p

�̃(2j )2− j
p

�(2−j )
1
p

�

⎛⎝∑
j∈N

Nj�(2−j )

⎞⎠
1
p
⎛⎝∑

j∈N

(
�̃(2j )p2−j

�(2−j )

) 1
p−1

⎞⎠1− 1
p

,

the first term being finite by Lemma 1 and the second one by (2). �

Lemma 12. For any j �3, if � is a function such that ‖�‖L∞ �1 and
∥∥�′∥∥

L∞ �2j , then∫ 1
2

− 1
2

|�(y)|F2j (y) dy�1/2.

Proof. We split the integral in two parts, |y| < 2−j and on 2−j < |y| < 1
2 . The first part is

bounded by

uj := 2
∫ 2−j

0

(
sin(2j�y)

sin(�y)

)2

y dy.

Doing a change of variables and using the fact that sin(
�y
2 )� sin(�y)

2 we see that uj is decreasing;
numerically u3 = 0.2496183586 . . . so for all j �3, uj < 1

4 .
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For the second part note that if j �3, then 1
2 > y > 2−j implies that sin(�y) > 21−j so

actually F2j (y)� sin(2j�y)2

2 and∫
2−j <|y|< 1

2

|�(y)|F2j (y) dy�
∫ 1

2

− 1
2

sin(2j�y)2

2
dy = 1

4
. �

Corollary 13. If 1 < p < ∞ and E is a set such that dimH (E) < 1 − �p, then there exists
g ∈ Lp(T) such that for all x ∈ E, lim supn n−�|Sng(x)| = ∞.

Proof. Take �(n) := n� and �(x) := x�, where dimH (E) < � < 1 − �p. �

3. Wavelet series

If g is a function in Lp(T), its wavelet coefficients (with L2 normalization) are trivially bounded

by the Hölder inequality:
∣∣〈g, �jk

〉∣∣�C�‖g‖Lp 2( 1
p

− 1
2 )j , where C� depends only on �; so at any

point x ∈ T, Tjg(x) (and even T ∗
j g(x)) cannot diverge faster than 2

j
p ; on the other hand, this

series converges almost everywhere [14]. As in the case of Fourier series, we have the following
finer result on pointwise divergence rates.

Theorem 14. Let g ∈ Lp(T), 1 < p < ∞. For ��0, let

E(�) :=
{

x, lim sup
j→∞

2−�j T ∗
j g(x) > 0

}
.

Then dimH (E(�))�1 − �p.
Conversely, if � is the Haar wavelet, given a set E such that dimH (E) < 1 − �p, there exists

g ∈ Lp(T) such that for all x ∈ E,

lim sup
j→∞

2−�j
∣∣Tjg(x)

∣∣ = ∞.

This theorem a direct consequence of Propositions 18 and 19 below. Note that the series of
absolute values T ∗

j g has essentially the same bound on its multifractal spectrum of pointwise
divergence than Tjg; this is in contrast with the Fourier series.

In the case where p�2 and the wavelet is compactly supported, we get a more precise result
on the Hausdorff measures of the divergence sets (Proposition 16).

3.1. Upper bound on the Hausdorff dimension

As mentioned before, wavelets provide an unconditional basis of Lp. More precisely, the
Calderon–Zygmund theory can be restated in terms of periodized wavelets under rather weak
regularity conditions. According to Corollary 4.5 of [4], if as specified in 1.2 � is piecewise
�-Lipschitz, then we know that g ∈ Lp(T) if and only if the function

g̃ : x �→
⎛⎝ ∞∑

j=0

2j −1∑
k=0

∣∣〈g, �jk

〉
�jk(x)

∣∣2⎞⎠
1
2
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is also in Lp. Crudely speaking, this means that we cannot have too many “big” wavelet coeffi-
cients; we shall translate this in terms of Hausdorff dimension.

Let us start with a simpler case.

Lemma 15. Let g ∈ Lp(T), 2�p < ∞, m > 0 and l ∈ N be fixed. Let � : [0, ∞) → (0, ∞)

be an increasing function and define

Kj :=
{

k,
∣∣〈g, �jk

〉∣∣� 2− j
2 �(2j )

m

}
,

Ijk := [(k − l)2−j , (k + l)2−j ]

and

Fm(�) := lim sup
j→∞

⋃
k∈Kj

Ijk.

Then H�(Fm(�)) = 0, with �(s) := s�(s−1)p.

Proof. Let nj := #(Kj ). Without loss of generality, we can assume that there exists 0 < a < 1
such that |�(x)|�a when x ∈ [0, a]. Let 
jk := 1[k2−j ,(k+a)2−j ]. By our assumption above,

2j
jk(x)�a−2
∣∣�jk(x)

∣∣2 for all x. Note that

nj = 2j

a

∫
T

⎛⎝∑
k∈Kj


jk(x)

⎞⎠
p
2

dx

and thus

a

∞∑
j=0

nj�(2−j ) =
∞∑

j=0

2p( 1
p

− 1
2 )j�(2−j )

∫
T

⎛⎝∑
k∈Kj

2j
jk(x)

⎞⎠
p
2

dx

�
∫

T

⎛⎝ ∞∑
j=0

∑
k∈Kj

(
2( 1

p
− 1

2 )j�(2−j )
1
p

)2
2j
jk(x)

⎞⎠
p
2

dx

�
∫

T

⎛⎝ ∞∑
j=0

∑
k∈Kj

(
2− j

2 �(2j )
)2

a−2
∣∣�jk(x)

∣∣2⎞⎠
p
2

dx

�
∫

T

⎛⎝ ∞∑
j=0

2j −1∑
k=0

ma−2
∣∣〈g, �jk

〉
�jk(x)

∣∣2⎞⎠
p
2

dx,
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which is finite because g̃ ∈ Lp. But for all j0 ∈ N, Fm(�) is naturally covered by the Ijk , j �j0,
k ∈ Kj ; the above convergence implies that

lim
j0→∞

∞∑
j=j0

∑
k∈Kj

�(
∣∣Ijk

∣∣) = 0,

therefore the �-Hausdorff measure is zero. �

Proposition 16. Let g ∈ Lp(T), 2�p < ∞, and assume that the mother wavelet � has compact
support. Let � > 0, and

E(�) :=
{

x, lim sup
j0→∞

2−�j0T ∗
j0

g(x) > 0

}
.

If � > 1
p

, then E(�) = ∅; else H1−�p(E(�)) = 0.

Proof. Note that in the case of compactly supported �, if j is large enough, then �jk = �jk , so
we can forget that we are working with periodized wavelets.

Considering the remark that precedes Theorem 14, we can assume that 0 < �� 1
p

. Let m > 0
and l be larger than the support of �. Let

Em(�) :=
{

x, lim sup
j0→∞

2−�j0T ∗
j0

g(x) >
1

m

}
.

We want to show that if �(n) = n�, then for some constant C depending only on �, p and �, we
have E

m
C (�) ⊂ Fm(�).

Suppose that x /∈ Fm(�). This means that, with at most a finite number of exceptions, x /∈⋃
k∈Kj

Ijk . Since l2−j is larger than the support of �jk , if �jk(x) �= 0, then k /∈ Kj , and∣∣〈g, �jk

〉∣∣� 1
m

2

(
�− 1

2

)
j
. So

2j −1∑
k=0

∣∣〈g, �jk

〉
�jk(x)

∣∣ = ∑
k /∈Kj

∣∣〈g, �jk

〉
�jk(x)

∣∣� C1

m
2�j ,

where C1 := supx

∑
k |�0k(x)| < ∞. Since � > 0,

j0∑
j=0

2j −1∑
k=0

∣∣〈g, �jk

〉
�jk(x)

∣∣� C

m
2�j0 ,

with C := C1
2�

2�−1
. So x /∈ E

m
C (�).

Using Lemma 15, we have proved that H1−�p(E
m
C (�)) = 0. To conclude, remark that E(�) =⋃

m∈N E
m
C (�), so by �-additivity H1−�p(E(�)) = 0. �

If p < 2 or if the wavelet is not compactly supported, we need to adapt the proof, to the cost
of some loss in precision. We are able to conclude only on the Hausdorff dimension.
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Lemma 17. Let g ∈ Lp(T), 1 < p < ∞, m > 0 and l ∈ N. For ��0 and 0 < � < 1, we define

Kj :=
{
k,
∣∣〈g, �jk

〉∣∣� 1

m
2−( �−1

p
+ 1

2 )j

}
,

I �
jk := [(k − 2�j )2−j , (k + 2�j )2−j ]

and

Fm,�(�) := lim sup
j

⋃
k∈Kj

I �
jk.

Then dimH (Fm,�(�))� �
1−� .

Proof. We start as in the proof of Lemma 15, multiplying the terms of the sum by j−�, with
� := max(0, 2 − p):

∞∑
j=1

nj 2−�j j−� =
∞∑

j=1

j−�2−2( �−1
p

+ 1
2 )j

p
2

∫
T

⎛⎝∑
k∈Kj

2j
jk(x)

⎞⎠
p
2

dx

using the Hölder inequality if p < 2,

�
∫

T
C0

⎛⎝ ∞∑
j=1

∑
k∈Kj

2−2( �−1
p

+ 1
2 )j 2j
jk(x)

⎞⎠
p
2

dx

< ∞

(here C0 =
(∑∞

j=1 j
−� 2

2−p

) 2−p
p

if p < 2, C0 = 1 else). So
∑∞

j=1 nj 2�′(�−1)j is finite as soon as

�′ > �
1−� ; we conclude that dimH (Fm,�)(�)� �

1−� . �

Applying this lemma as in Proposition 11 will do the direct part of Theorem 14.

Proposition 18. Let g ∈ Lp(T), 1 < p < ∞. Let ��0, and

E(�) :=
⎧⎨⎩x, lim sup

j0→∞
2−�j0

j0∑
j=0

2j −1∑
k=0

∣∣〈g, �jk

〉
�jk(x)

∣∣ > 0

⎫⎬⎭ .

If � > 1
p

, then E(�) = ∅; else dimH (E(�))�1 − �p.

Proof. Let 0 < �� 1
p

, m > 0, and

Em(�) :=
⎧⎨⎩x, lim sup

j0→+∞
2−�j0

j0∑
j=0

2j −1∑
k=0

∣∣〈g, �jk

〉
�jk(x)

∣∣ > 1

m

⎫⎬⎭ .

We chose an � > 0 and we will show that if � := 1 − �p, then for some constant C depending
only on �, p, �, and �, we have E

m
C (�) ⊂ Fm,�(�).
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Suppose that x /∈ Fm,�(�). This means that, with at most a finite number of exceptions, x /∈⋃
k∈Kj

I �
jk . So if k ∈ Kj ,

∣∣2j x − k
∣∣�2�j , and � being rapidly decreasing, for all � there exists

C� < +∞ such that
∣∣�jk(x)

∣∣�C�2−��j . It follows that
∑

k∈Kj

∣∣�jk(x)
∣∣�C�2(1−��)j . Moreover,

since g ∈ Lp(T),
∣∣〈g, �jk

〉∣∣�C�‖g‖Lp 2( 1
p

− 1
2 )j . We chose � so that 1

p
− 1

2 + 1 − �� < −�−1
p

, and
then, if j is large enough,∑

k∈Kj

∣∣〈g, �jk

〉
�jk(x)

∣∣� 1

m
2− �−1

p
j
.

If k /∈ Kj , we obtain as in the proof of Proposition 16∑
k /∈Kj

∣∣〈g, �jk

〉
�jk(x)

∣∣� C1

m
2− �−1

p
j
.

Adding up everything, and using the fact that � < 1, we obtain for an adequate constant C:

j0∑
j=0

2j −1∑
k=0

∣∣〈g, �jk

〉
�jk(x)

∣∣� C

m
2�j0 .

Sox /∈ E
m
C (�). By Lemma 17, we deduce that dimH (E

m
C (�))� �

1−� , and sinceE(�) =⋃m∈N E
m
C

(�), by �-stability of the dimension, dimH (E(�))� �
1−� . Finally we let � → 0. �

3.2. Optimality of the upper bound

We now turn to the converse part, showing that the bound in Proposition 16 is optimal. To
simplify, we assume from now on that � is the Haar wavelet.

Proposition 19. Let � > 0 and 1�p < ∞, and suppose that dimH (E) < �. There exists

g ∈ Lp(T) such that for all x ∈ E, lim supj 2
�−1
p

j
Tjg(x) = ∞.

Proof. Let dimH (E) < �′ < � and define Ej and Nj as in Lemma 1, with �(x) = x�′
. Let

g :=
∞∑

j=0

2
1−�
p

j 1Ej
.

Then ‖g‖p
Lp �

∑∞
j=0 Nj 2−j

(
2

1−�′
p

j

)p

< ∞. Moreover,

Tj0g(x) =
j0∑

j=0

2
1−�′

p
j 1Ej

(x) + Tj0

⎛⎝ ∞∑
j=j0+1

2
1−�′

p
j 1Ej

⎞⎠(x) (3)

�
j0∑

j=0

2
1−�′

p
j 1Ej

(x) (4)

and if x ∈ E, x ∈ Ej0 for infinitely many j0, for which Tj0g(x)�2
1−�′

p
j0 . �
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Here we used two special properties of the Haar basis: in (3) the fact that indicatrix functions
of dyadic intervals of size �2−j0 are in the invariant subspace of Tj0 , in (4) the fact that the
projection kernel is positive. This is in general false for other wavelets (causing the so-called
Gibbs’ phenomenon for wavelets [13,19]).
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